

UltraVision Classic

How To Guide – Release 3.11R4 & Higher

FMC & PWI Raw Data Reconstruction

Revision History

Revision	Modifications	Date
1	Original	2020.11.16
2	 Modified UI for Software Beam Summation Tool Added PWI raw data reconstruction Added "Linear Unchecked" reconstruction 	2023.04.05

Table of Content

1	Introduction - Purpose of the Tool	4
2	FMC & PWI Raw Data Reconstruction Options	5
2.1	FMC Firing Sequence	5
2.2	PWI Firing Sequence	5
3	FMC & PWI Raw Data Reconstruction Options	6
4	Typical User Cases - FMC Data Reconstruction	8
4.1	1D-Linear Probe, LW Wedge, Pulse-Echo Mode, recorded with TOP ΔZ_{64}	8
4.1.2	1 Standard PA UT Reconstruction	10
4.1.2	2 Sectorial Total Focusing Reconstruction	12
4.1.3	3 FMC-TFM Reconstruction	14
4.2	Dual 2D-Matrix Array (DMA), Pitch & Catch Mode, recorded with EMERALD	21
4.2.2	1 Sectorial Total Focusing Reconstruction	23
4.2.2	2 TFM Reconstruction	25
4.3	1D-Linear Probe, SW Wedge, Pulse-Echo Mode, recorded with DYNARAY	
4.3.2	1 Sectorial Total Focusing Reconstruction	
4.3.2	2 TFM Reconstruction	
4.4	Dual 2D-Matrix Array (DMA), Pitch & Catch Mode, recorded with DYNARAY	
4.4.3	1 Sectorial Total Focusing Reconstruction	
4.4.2	2 TFM Reconstruction	
5	Typical User Cases - PWI Data Reconstruction	
5.1	1D-Linear Probe, LW Wedge, Pulse-Echo Mode, recorded with EMERALD	
5.1.2	1 TFM Reconstruction	
5.2	Dual 2D-Matrix Array (DMA), Pitch & Catch Mode, recorded with EMERALD	
5.2.2	1 TFM Reconstruction	
6	Reference Guide	53
6.1	Standard PA UT Reconstruction	54
6.2	Total Focusing Reconstruction	56
6.3	TFM Reconstruction	59

1 Introduction - Purpose of the Tool

The EMERALD remote data acquisition unit and the TOPΔZ⁶⁴ integrated phased array unit have the capability to record individual A-scans from FMC and PWI firing sequences, in addition to live TFM and phased array data.

The legacy **DYNARAY** remote data acquisition unit has the capability to record individual FMC A-scans in addition to live phased array data.

After recording, the UltraVision Classic software can be used to reconstruct various types of data groups from the raw FMC data, including standard phased array signals, TFM (Total Focusing Method) frames or TF (Total Focusing) images.

For raw PWI data, the reconstruction options are limited to TFM frames.

All FMC and PWI data reconstruction operations are performed using the **Process Summation** tool in the **Advanced Calculator.**

By recording the raw A-Scan data, the signals received by each individual element of the probe remain available for data analysis, and this allows the operator to fully exploit the benefits of various techniques, wave modes and advanced reconstruction algorithms.

FMC raw data saving on a complete weld is still a time-consuming process, but taking FMC Snapshots or Full Data on short scans in flawed or suspicious regions can be a valuable asset for the characterization and sizing of challenging flaws. In addition, the introduction of PWI firing has made the raw data saving process a more "industrial" option.

The second section of this document provides a brief explanation of the differences between FMC and PWI firing sequences.

The third section provides more detailed information about the advanced raw data reconstruction options in UltraVision Classic.

The fourth and the fifth section respectively illustrate the FMC and PWI raw data reconstruction processes in UltraVision Classic for some typical user cases , using relevant ultrasonic data.

And in the last section "Reference Guide", the various tools and options will be listed and explained in detail.

2 FMC & PWI Raw Data Reconstruction Options

2.1 FMC Firing Sequence

The Full Matrix Capture (FMC) firing sequence consists in capturing and recording A-Scan signals from every transmitter-receiver pair in an array. Each element of the probe is fired sequentially, and for each element pulsed, every receiving element collects an individual A-scan.

At the end of the FMC firing sequence for a probe with 64 elements, a matrix of 4096 (64 x 64) A-scan signals is recorded.

2.2 PWI Firing Sequence

Plane Wave Imaging (PWI) is an alternative firing technique that uses a multi-element aperture for pulsing, instead of firing each element individually like FMC.

The PWI firing sequence consists of one or more focal laws, typically with varying refracted angle. After each pulse, the raw A-scans from the reception by each individual element of the probe will be collected. Obviously, by firing more pulses at a wider range of angles, more and better information from the reflectors in the region of interest will be captured.

At the end of the PWI firing sequence with 10 pulses (angles) for a probe with 64 elements, a matrix of $640 (10 \times 64)$ A-scan signals is recorded.

PWI raw data recording has several benefits compared to FMC raw data recording:

- The emitted pulse from the full aperture has more energy and is more directional than a single element excitation; therefore, it provides greater sensitivity and potentially better SNR
- The firing sequence is significantly shorter (# pulses vs. # probe elements), which results in a higher PRF and scanning speed
- Less elementary A-scans need to be recorded and processed

So basically, PWI raw data recording has the potential to considerably increase the scanning speed, while conserving most of the benefits and the quality of classic FMC-TFM imaging.

3 FMC & PWI Raw Data Reconstruction Options

The UltraVision Classic software can be used to reconstruct various types of data groups from the raw data, including standard phased array signals, TFM (Total Focusing Method) frames or STF (Sectorial Total Focusing) images.

Standard phased array UT data group (only from FMC raw data)

In this case the FMC elementary A-scans are used to generate a sectorial, a linear or a compound sweep of A-scans, while applying the settings of the Advanced Calculator defined by the user. This is essentially the same calculation used during live phased array UT.

TFM (Total Focusing Method) data group (for both TFMC and PWI raw data)

TFM is the most commonly used advanced focusing algorithm.

The TFM algorithm sums all elementary A-scan signals acquired during the FMC or PWI firing sequence to generate a frame of pixels, where each pixel is computed using a dedicated focal law. The resulting TFM data group has the same characteristics as a merged data group.

In theory, ideal focusing is achieved in each point of the frame, but the focusing capability of this technique still depends on the acoustic wavelength and the total aperture of the array. Therefore, some conditions must be met to effectively obtain ideal focusing.

TF (Total Focusing) data group (only for FMC raw data)

The elementary A-scans from the FMC data recording can also be used to generate a sectorial (azimuthal), a linear or a compound sweep of A-scans, while focusing in each point along the sound path.

In the case of a sectorial sweep we will call this technique STF or "Sectorial Total Focusing", and its physical principle is very similar to a DDF (or Dynamic Depth Focusing) algorithm, applied both in transmission and in reception.

The algorithm has the benefit of generating a summed A-scan signal for each angle, identical to standard PA UT.

For reconstruction of TFM and TF data groups, UltraVision Classic offers a number of options:

DAS (Delay And Sum)

This is the most commonly used TFM and TF reconstruction algorithm. It basically applies appropriate delays to the individual pulser-receiver A-scan, and sums them afterwards.

DMAS (Delay Multiply And Sum)

This algorithm sums the delayed pulser-receiver A-Scans multiplied by each other. This process reduces the well-known TFM artifacts (isochrones) that are in fact "partially constructive" interferences, often occurring in the presence of large reflectors like the back-wall of a component.

PCF (Phase Coherence Factor)

TFM and TF with Phase Coherence Factor reduces the sidelobes of the image by modulating the amplitude of the signals with the phase information.

Envelope

This algorithm processes analytic signals obtained from the pulser-receiver A-Scans using the Hilbert Transform. The "envelope" is obtained from the magnitude of the summed analytic signals. The resulting images look like phased array signals with a smoothing filter applied.

The Envelope can be combined with either DAS, DMAS or PCF.

4 Typical User Cases - FMC Data Reconstruction

4.1 1D-Linear Probe, LW Wedge, Pulse-Echo Mode, recorded with TOPΔZ⁶⁴

When FMC raw data are recorded with **EMERALD** or $TOP\Delta Z^{64}$, the software generates 2 separate files, i.e. the regular **UVData** file that contains the phased array and/or live TFM data, and an additional **UVDataFMC** file with the same name that contains the raw FMC data.

In order to process the raw data, both files must be in the same directory on the computer. Just open the regular UVData file in UltraVision Classic and the additional file will automatically be loaded.

Open Data I	le					
Look in:	Files FMC R	os 🗸 🖓 🔊	.			
Libraries My PC	Name Extension F Images Flat_DMA 2 Flat_LM 5M FMC_LM 5M SS_DMA 22	^ iles 25MHz_PA UT_256&FMC_Notch.UVData Hz_Contact_TFM256&FMC_Static SS_01.UVData MHz_LW_Notch.UVData 5 MHz_TRL_PA&FMC_Crack.UVData	Date modified 30-Oct-20 4:28 PM 02-Nov-20 1:59 PM 17-Jul-20 2:21 PM 30-Apr-20 3:13 PM 02-Apr-20 4:18 PM 28-Sep-17 4:46 PM	Type File folder File folder UltraVision 3 Data UltraVision 3 Data UltraVision 3 Data UltraVision 3 Data	Size 21,536 KB 11,296 KB 9,248 KB 275,488 KB	Loaded Sections Hardware Setup Social Specimen Setup Signature Setup Component Setup File Information UT Data Extension File Social Setup Component Setup UT Data
Network	File name:	FMC_LM 5MHz_LW_Notch.UVData	~	Open		
	Files of type:	All Ultra Vision Data Files (* UVData :* ReamData :* m	tt·* dat)	~	Cancel	

Once the file is loaded, the raw FMC A-scan data will show up in the **Contents** Pane

The file for this user case was recorded on a reference specimen with a machined notch, and contains a static TFM frame 256 x 256 in L-L mode, in addition to an FMC Snapshot containing 4096 (64×64) individual A-scans.

The Linked VC-End view (for skew 90, 270 configurations) or Linked VC-Side view (for skew 0, 180 configurations) together with the A-Scan view are typically used to visualize live TFM data.

The TFM frame shows part of the back-wall echo, and tip and corner echoes from the machined notch.

4.1.1 Standard PA UT Reconstruction

The reconstruction of raw FMC data is performed in the **Advanced Calculator** interface.

To reconstruct standard PA UT data, select **Configuration Pulse-Echo** in the **Probe tab**.

Advanced Calculator	ά×
Hardware Probe	Process Summation
	Draw
Focalization Elements	Simulate
	All Commands 👻
	^
Type 1-D Linear array	<u> </u>
Probe separation	0.00 mm
Configuration	Pulse-Echo 🗸
Transmitter wave type	Longitudinal ~
Receiver wave type	Longitudinal ~

Then define the parameters of the Sector scan in the **Beam Angles**, **Focalization** and **Elements** tabs.

Advanced Calculator				ųΧ	Advanced Calculator		Ψ×	Advanced Calculator				ųΧ
Hardware Probe Wedge Scanner Beam Angles Focalization Elements		6	Process Si Dra Con All Com	ummation sw rulate mands •	Hardware - Probe - Wedge - Scanner - Beam Angles - Focalization - Elements	Proc	Draw Simulate	- Hardware - Probe - Wedge - Scanner - Beam Angles - Focalization - Elements			Process	Summation Draw imulate mmands •
Type Azimuthal Selection Refracted ang	v le	•]	*		Focusing type	Half path	~	Transmitter				
Use Impingement Angle Primary steering angle Secondary steering angle	Start 0.0 0.0	Stop 0.0 0.0	Resolutio	n deg deg	Emission focus position Focal plane position Start Offset 100.00	Start Stop Re 50.00 0.00 1 10.00 mm	solution .00 mm	Primary axis Secondary axis Primary axis aperture Secondary axis aperture	Start	Stop 1 1	Resolutio	n]
Refraction angle Beam skew angle	0.0	80.0 0.0	1.0	deg deg	Depth 0.00	20.00 mm		Connection	1			
	[Process	s Angles]	DDF DDF Reception focus position Timebase Timebase Type Timebase values Resolution	Start Stop 50.00 50.00 Half Path Start Range 0.00 65.00 mm 0.10 mm or ✓ Ascan sa	mm m mping	Primary axis Secondary axis Primary axis aperture Secondary axis aperture Connection	Start	Stop 1 1	Resolutio	n]

Then hit the **Process Summation** button, and the software will propose a structured name for the **New Channel** of reconstructed data. The user can modify this name.

Advanced Calculator		ų×	🔹 Software Beam Summa	tion	×
Hardware Probe	-	Process Summation	New Channel Name:	Sector R: 10.0 - 80.0 deg Sk: 90.0 deg	
Wedge Scanner Beam Angles	/	Draw	Rectification:	Bipolar V	
Focalization Elements		Simulate			
		All Commands 👻			OK Cancel

Upon hitting **OK** the data will be processed.

Beam Summation			\times
Total progress:			
	Close this window au	tomatically when done	
Details	Close	Cancel	

After processing, the reconstructed channel will appear in the **UltraVision Manager**, and can be visualized like regular standard phased array data (e.g. Sectorial scan and A-scan views). The sectorial scan from 10° to 80°LW focused at HP 50 mm shows part of the back-wall echo, and tip and corner echoes from the machined notch.

This reconstructed data group has exactly the same characteristics as a regular phased array data group and can be further used for **Volumetric Merge** operations and visualization.

4.1.2 Sectorial Total Focusing Reconstruction

To reconstruct Sectorial Total Focusing data, select **Configuration Pulse-Echo** in the **Probe** tab.

Advanced Calculator	ų ×
Hardware Probe	Process Summation
Wedge Scanner Beam Angles	Draw
Focalization Elements	Simulate
	All Commands 👻
	~
Type 1-D Linear array	- 68 68
Probe separation	0.00 mm
Configuration	Pulse-Echo 🗸
Transmitter wave type	Longitudinal V
Receiver wave type	Longitudinal V

Then define the parameters of the Sector scan in the **Beam Angles**, **Focalization** and **Elements** tabs. In the **Focalization** tab select **Focusing Type Total Focusing.** In this tab the **Envelope** option can also be selected.

Advanced Calculator				ų×	Advanced Calculator	д	X Advanced Calculator			ф.	×
Hardware - Probe - Wedge - Scanner - Beam Angles - Focalization - Elements		6	Process Si Dra Constant All Com	ummation www.ulate	Hardware - Probe - Wedge - Scanner - Beam Angles - Focalization - Berrents	Process Summation Process Summ	Hardware Probe Wedge Scanner Beam Angles Focalization Bements		A A	Process Summation Draw Simulate All Commands	-
Type Azimuthal Selection Refracted angle	~		~		Focusing type	Total focusing ~	Transmitter				
Use Impingement Angle					Emission focus position	Start Stop Resolution	Primary axis	Start	Stop	Resolution	
	Start	Stop	Resolutio	n	Focal plane position		Secondary axis			1	
Primary steering angle	0.0	0.0	1.0	deg	Start		Primary axis aperture	64			
Secondary steering angle	0.0	0.0	1.0	deg	Offert 100.00	10.00	Secondary axis aperture	1			
Refraction angle	10.0	80.0	0.5	deg	Depth 0.00	20.00 mm	Connection	1			
Beam skew angle	0.0	0.0	1.0	deg	DDF		Receiver				
		Process	s Angles	1	DDF			Start	Stop	Resolution	
				1			Primary axis	1 1		1	
						Start Stop	Secondary axis	1 1		1	
					Reception focus position	50.00 mm		C4			
					Timebase		- Primary axis aperture	04			
					Timebase Type	Half Path V	Secondary axis aperture	1			
						Start Range	Connection	1			
					Timebase values	0.00 65.00 mm					
					Resolution	0.10 mm					
						or A-scan sampling					
						or 🕑 Ascan samplinig					

Then hit the **Process Summation** button, and the software will again propose a structured name for the **New Channel** of reconstructed data.

In the case of a data reconstruction with STF (Sectorial Total Focusing), the processing options appear: **PCF** (Phase Coherence Factor), **Envelope** and **DMAS** (Delay Multiply and Sum). If none of the options is checked, the common **DAS** (Delay and Sum) reconstruction algorithm is used.

Advanced Calculator	1×	🔹 Software Beam Summation		×
Hardware Probe Wedge Scanner Beam Angles Focalization	Process Summation	New Channel Name: TF LU S Rectification: Bipolar	ector R: 10.0 - 80.0 deg Sk: 90.0 deg	
Elements	All Commands	PCF DMAS Linear		OK Cancel

Important Note :

A sectorial data group has been selected here for reconstruction, meaning that the individual reconstructed A-scans will be accessible for e.g. Volumetric Merge. For that reason the "Linear" option is unchecked (and grayed out), and the proposed structured name includes the mention "LU" ("Linear Unchecked").

Upon hitting **OK** and processing, the reconstructed STF channel will appear in the **UltraVision Manager**, and can be visualized like regular standard phased array data (e.g. Sectorial scan and A-scan views).

This reconstructed data group has exactly the same characteristics as a regular phased array data group and can be further used for **Volumetric Merge** operations and visualization.

In this example, the image from the reconstructed STF looks very similar to the reconstructed standard PA UT focused at HP 50 mm, because the notch is in the focusing range of the standard PA UT.

4.1.3 FMC-TFM Reconstruction

To reconstruct FMC-TFM data, select **Configuration TFM Pulse-Echo** in the **Probe tab**.

Advanced Calculator	ų ×
Hardware Probe	Process Summation
Scanner TFM	Draw
Elements	Simulate
	All Commands 👻
	^
Type 1-D Linear array	· · · 58 58 5
Probe separation	0.00 mm
Configuration	TEM Pulse-Echo

Then define the parameters of the TFM frame in the **TFM** and **Elements** tabs. The parameters for the definition of the reconstructed TFM data are similar as for the live TFM on $TOP\Delta Z^{64}$.

First, the **Construction path** will be set to **L-L**, just like the live TFM data, and also the frame extent will be selected identical. The **Frame Resolution** will set at 1024 x 1024, improving the **Amplitude Fidelity** from 1.6 dB to 0.1 dB. In this tab the **Envelope** option can also be selected.

Advanced Calculator		Advanced Calculator		ų ×
- Hardware - Probe - Wedge - Scanner - TFM - Bements	Process Summ Process Summ Draw Simula All Comman	nation Hardware Probe Wedge Scanner TFM Bements		Process Summation Process Summation Prove Draw Simulate All Commands
Construction path 1	L-L ~			
Construction path 2	None \vee	Transmitter	Start	Stop Resolution
Construction path 3	None \vee	Disas sis	1	
Construction path 4	None \sim	rimary axis		
Frame location	Absolute \checkmark	Secondary axis		
Frame horizontal start	70.00 mm	Primary axis aperture	64	
Frame horizontal width	60.00 mm	Secondary axis aperture	1	
Frame vertical start	0.00 mm	Connection	1	
Frame vertical depth	60.00 mm	Receiver		
Frame Resolution	1024 × 1024 ~	1000100	Start	Stop Resolution
Custom Resolution		Primary axis	1 1	1
Real frame resolution	1024 1024	Secondary axis	1 1	1
DigitizingFrequency	~	Primary axis aperture	64	
Depth Resolution	0.05 λ	Secondary axis aperture	1	
Width Resolution	0.05 λ	Connection	1	
Amplitude Fidelity	0.1 dB			
Data Collection Mode	HMC ~			
Envelope				

Then hit the **Process Summation** button, and the software will again propose a structured name for the **New Channel** of reconstructed data.

In the case of a TFM data reconstruction, the same options appear as for STF: **PCF** (Phase Coherence Factor), and **DMAS** (Delay Multiply and Sum). If none of these options is checked, the common **DAS** (Delay and Sum) reconstruction algorithm is used.

Advanced Calculator		ά×	🔹 Software Beam Summa	tion	×
Hardware Probe Wedge Scanner TFM Elanosta	_	Process Summation	New Channel Name: Rectification:	TFM Sk: 90.0 deg L-L (1024 x 1024) Bipolar ~	
Dominia		All Commands	□ PCF □ DMAS ☑ Linear		OK Cancel

Important Note :

A TFM data group has been selected here for reconstruction. By default, live TFM data are recorded with the "Linear" option checked in the **UT Settings**, and behave like a "merged" data group. In that case, the reconstructed data will also be reconstructed as a "merged" data group, and the proposed structured name does not include the mention "LU".

Before recording the live TFM and raw FMC or PWI data, the user can however decide to uncheck the "Linear" option and in that case the raw data can also be reconstructed with the "Linear Unchecked" option. This gives more flexibility for the Volumetric Merge process, e.g. different scan lines in a raster scan sequence can be merged individually.

Upon hitting OK and processing, the reconstructed TFM channel will appear in the **UltraVision Manager**, and can be visualized like live TFM data (e.g. Linked VC-End and A-scan views).

As for the live TFM, the reconstructed frame shows the back-wall echo, and tip and corner echoes from the machined notch, but with improved resolution because of the 1024 x 1024 (1 Megapixel) frame.

For the second FMC-TFM reconstruction, the options **Envelope** and **DMAS** are checked, and this is also reflected in the structured name for the **New Channel** of reconstructed data.

Advanced Calculator	ά×	🔹 Software Beam Summation	×
Hardware Probe Wedge Scanner TFM	Process Summation	New Channel Name: TFM DMAS & Envelope Sk: 90.0 deg L-L (1024 x 1024) Rectification: Bipolar	
Elements	All Commands -	PCF DMAS OK Cancel	

Upon hitting OK and processing, the reconstructed TFM channel will appear in the **UltraVision Manager** and can be visualized.

For the third FMC-TFM reconstruction, the **Construction path** is set to **LL-L**, and we can observe that the frame vertical extent is automatically limited to the specimen thickness. This is also the case for other indirect reconstructions paths (e.g. LL-LL, LL-T, ...). The **Frame Resolution** is set at a **Custom Resolution** of 1000 x 1000, just to illustrate the presence of this option. The **Amplitude Fidelity** is obviously very similar at 0.1 dB.

Advanced Calculator		Į ×	Advanced Calculator			ą.
Hardware Probe Wedge Scanner TFM Bements	e	Process Summation	- Hardware - Probe - Wedge - Scanner - TFM - Elements			Process Summation Process Summ
Construction path 1	LL-L	~				
Construction path 2	None	~	Transmitter	Chard	Stop	People tion
Construction path 3	None	\sim		Jun	Joop	
construction path 4	None	\sim	Primary axis			
rame location	Absolute	~	Secondary axis	1	1	1
rame horizontal start	70.00 mr	n	Primary axis aperture	64		
rame horizontal width	60.00 mr	n	Secondary axis aperture	1		
rame vertical start	0.00 mr	n	Connection	1		
rame vertical depth	50.00 mr	n	Receiver			
rame Resolution		~		Start	Stop	Resolution
ustom Resolution			Primary axis	1	1	1
eal frame resolution	1000	1000	Secondary axis	1	1	1
igitizing Frequency		~	Primary axis aperture	64		
epth Resolution	0.04 λ		Secondary axis aperture	1		
/idth Resolution	0.05 λ		Connection	1		
mplitude Fidelity	0.1 dE	3				
ata Collection Mode	HMC	~				
nvelope						

Then hit the **Process Summation** button, and the software will again propose a structured name for the **New Channel** of reconstructed data, mentioning the **LL-L** wave mode.

Advanced Calculator	Į×	🔹 Software Beam Summation	×
Hardware Probe Wedge Scanner TFM	Process Summation	New Channel Name: TFM Sk: 90.0 deg LL-L (1000 x 1000) Rectification: Bipolar V	
Ements	All Commands	□ PCF □ DMAS ☑ Linear OK Cancel	

Upon hitting OK and processing, the reconstructed TFM channel will appear in the **UltraVision Manager**.

We can see that for this type of planar flaw, perpendicular to the ID surface, the LL-L wave mode provides a complete image of the surface of the flaw. This information is complementary with the image from the L-L wave mode.

The image below shows images in the L-L wave mode, from live TFM and 5 different reconstruction algorithms. The live TFM in the upper left corner is a 256 by 256 frame, code-compliant but close to the 2 dB amplitude fidelity threshold. The reconstructed data are 1024 x 1024 frames. After reconstruction of the region of interest shown in the examples above, the images have been zoomed in on the notch.

It can be observed that the TFM envelope image (upper right corner) is smoother than the regular TFM, and may simplify data interpretation.

More obvious is that the DMAS and PCF algorithms strongly reduce the artifacts from the corner trap. In this example, the best image in the lower right corner is provided by combining DMAS and envelope processing. The height and even the width of the machined notch can be accurately measured.

The next image shows the same algorithms applied for LL-L reconstruction of the raw FMC data of the machined notch. Again, it can be observed that DMAS and PCF in combination with the envelope eliminate a large part of the TFM artifacts and provide a clearer image of the flaw face.

4.2 Dual 2D-Matrix Array (DMA), Pitch & Catch Mode, recorded with EMERALD

In this user case, the FMC raw data have been recorded with **EMERALD**. In order to process the raw data, just open the regular UVData file in UltraVision Classic and the additional UVDataFMC file will automatically be loaded as well. Once the file is loaded, the raw FMC A-scan data will show up in the **Contents** Pane.

The file for this user case was recorded on a CASS (Cast Austenitic Stainless Steel) weld specimen with a real thermal fatigue crack, and contains a standard PA UT channel with an azimuthal sweep from 30° to 75°LW, a live TFM channel, and FMC raw data taken every 2 mm over a total distance of 120 mm.

The DMA probe assembly consists of two large 1 MHz 2D-matrix arrays with each 10 x 5 elements, fixed onto a TRL wedge. The image from the Advanced Calculator shows the DMA probe assembly.

The merged standard PA UT data and the live FMC-TFM data are shown below (VC-Side and VC-End Views). The corner and tip signals from the crack can be clearly observed.

To perform the reconstruction from the FMC raw data, make sure that the live TFM channel is "active" by clicking on a view of this channel. If the standard PA UT channel is selected, the **Process Summation** button will NOT appear.

4.2.1 Sectorial Total Focusing Reconstruction

To reconstruct Sectorial Total Focusing data, select **Configuration Pitch & Catch** in the **Probe tab**.

dvanced (Calculator	џ >
Hardwa Probe	are	Process Summation
Wedge Scanne	er	Draw
-Beam A	Ingles	P14
Elemen	ation ts	Simulate
		All Commands -
Туре	2-D Matrix array	
Probe se	paration	41.00 mm
Configura	ation	Pitch and Catch \checkmark
Tranemit		
Inditioning	ter wave type	Longitudinal V

Then define the parameters of the Sector scan in the **Beam Angles**, **Focalization** and **Elements** tabs. In the **Focalization** tab select **Focusing Type Total Focusing**. In this example, a very small angle resolution was chosen, to illustrate the capability to generate high resolution azimuthal sweeps.

Advanced Calculator				φ×	Advanced Calcul	ator		4 ×	Advanced Calculator		ų ×
Hardware - Probe - Wedge - Scanner - Beam Angles - Focalization - Elements		6	Process S	Summation raw mulate nmands •	Hardware Probe Wedge Scanner Beam Angles Focalization Elements			Process Summation	Hardware - Probe - Wedge - Scanner - Beam Angles - Focalization - Beements		Process Summation
Type Azimuthal Selection Refracted/Bea	→ am skew ang ection	e	~		Focusing type Envelope		Total focu	sing ~	Transmitter	Start St	n Resolution
Use Impingement Angle							Start	Stop Resolution	Primary axis	1 1	1
	Start	Stop	Resoluti	on	Emission focus po	sition	50.00	0.00 1.00 mm	Secondary axis	1 1	1
Primary steering angle	0.0	0.0	1.0	deg	Focal plane pos	tion			Primary axis aperture	10	
Secondary steering angle	0.0	0.0	1.0	deg		Start			Constant and a	[]	
Refraction angle	30.0	85.0	0.2	deg	Offset	0.00	10.00	mm	Secondary axis aperture		
Beam skew angle	0.0	0.0	1.0	deg	Depth	0.00	20.00	mm	Connection	1	
	[Process	s Angles		DDF				Receiver	Start Sto	p Resolution
					Reception foc	us position	Start 50.00	Stop 50.00 mm	Primary axis Secondary axis Primary axis aperture	1 1 1 1 10	1
					Timebase				Secondary avis aperture	5	
					Timebase Type		Half P	ath 🗸 🗸	occorrulary axis aperture		
							Start	Range	Connection	65	
					Timebase value	3	0.00	80.00 mm			

Then hit the **Process Summation** button, and the software will propose a structured name for the **New Channel** of reconstructed data.

In the case of a data reconstruction with STF (Sectorial Total Focusing), the processing options appear: **PCF** (Phase Coherence Factor) and **DMAS** (Delay Multiply and Sum). In this case, the **DMAS** option was selected.

Advanced Calculator	Į ×	🔹 Software Beam Summation	×
- Hardware - Probe - Wedge - Scanner - Beam Angles - Focalization - Elements	Process Summation	New Channel Name: TF LU DMAS & Envelope Sector R: 30.0 - 75.0 deg S: 0.0 - 0.0 degSk: 90.0 deg Rectification: Bipolar PCF DMAS Linear OK	

Upon hitting **OK** and processing, the reconstructed STF channel will be generated.

Since this is a larger data file, the processing time is longer. The user can monitor the progress of the operations, by hitting the Details button.

Beam Summation	
Total progress:	
Close this window automatically	when done
	_
Details Close Cancel	
Task	Progression
Preparing beams to generate data for	^
Scan/Index 1 of 61	
Scan/Index 2 of 61	
Scan/Index 3 of 61	
Scan/Index 4 of 61	
Scan/Index 5 of 61	
Scan/Index 6 of 61	
Scan/Index 7 of 61	
Scan/Index 8 of 61	
Scan/Index 9 of 61	
Scan/Index 10 of 61	
Scan/Index 11 of 61	
Scan/Index 12 of 61	
Scan/Index 13 of 61	
Scan/Index 14 of 61	
Scan/Index 15 of 61	
Scan/Index 16 of 61	
Scan/Index 17 of 61	

The Volumetric Merge tool can also be used on the reconstructed STF data group, with the parameters shown below. The merged data group is shown together with the reconstructed TFM from the next paragraph.

VM Volumetric Merge ×	VM Volumetric Merge ×	VM Volumetric Merge ×
Outer Processing Ranges Image: Constraint of the state of the s	Data Processing New mege name Marge STF DMAS Vectors Sectors Sectors Operation Include source poston information Include source poston information Include source poston information Threshold 10 Sectoral interpolation	Data Processing Ranges Source region Source data selection Complete International second
Impot Expot (Back Next) Finish Cancel	Import Export < Back Next > Finish Cancel	Import Export < Back Next > Finish Cancel

4.2.2 TFM Reconstruction

To reconstruct TFM data, select **Configuration TFM Pitch & Catch** in the **Probe tab**.

Hardware Probe Wedge Scanner TFM Bements Simular	ą	×
	mmation	
Elements Simu	N	
	ulate	
All Comma	ands	·
		^
Type 2-D Matrix array 🗸	Se la constantina de la consta	
Probe separation 41.00 n	mm	
Configuration TFM Pitch and Catch	~	

Then define the parameters of the TFM frame in the **TFM** and **Elements** tabs. The parameters for the definition of the reconstructed TFM data are similar as for pulse-echo TFM.

The **Construction path** is set to **L-L**, just like the live TFM data, and a **Frame Resolution** of 256 x 256 is used. It can be observed that since the release of UltraVision 3.12R18, the operator can adjust the **Digitizing Frequency** (possible values 100 MHz, 50 MHz, 25 MHz and 12.5 MHz) for the recording of raw data. For low-frequency probes, reducing the digitizing frequency allows to drastically increase the scanning speed while maintaining excellent raw data quality and reconstructed image quality.

Advanced Calculator		Ψ×	Advanced Calculator		ф.
Hardware Probe Wedge Scanner TFM Bements		Process Summation	Hardware Probe Wedge Scanner TFM Bements		Process Summation
Construction path 1	L-L	~			
Construction path 2	None	~	Transmitter		
Construction path 3	None			Start Sto	op Resolution
Construction path 4	None	~	Primary axis	1 1	1
Frame location	Absolute	~	Secondary axis	1 1	1
Frame horizontal start	-30.00	mm	Primary axis aperture	10	
Frame horizontal width	60.00	nm	Secondary axis aperture	5	
Frame vertical start	0.00	nm	Connection	1	
Frame vertical depth	70.00	mm	Connection		
Frame Resolution	256 × 256	~	Receiver	Start Sto	p Resolution
Custom Resolution			Primary avis	1	1
Real frame resolution	256	256	Secondary and		
DigitizingFrequency	50 MHz	~	Secondary axis		
Depth Resolution	0.05		Primary axis aperture		
Width Resolution	0.04	Ň.	Secondary axis aperture	5	
Amplitude Fidelity	0.1	dB	Connection	65	
Data Collection Mode	FMC	~			
Envelope					

Then hit the **Process Summation** button, and the software will again propose a structured name for the **New Channel** of reconstructed data.

Advanced Calculator	Ψ×	🔹 Software Beam Summa	tion		×
- Hardware - Probe - Wedge - Scanner - Beam Angles - Eccalization	Process Summation	New Channel Name: Rectification:	TFM DMAS & Envelope Sk: 90.0 deg L-L (256 x 256) Bipolar		
Elements	All Commands	PCF DMAS Linear		ОК	Cancel

After hitting OK and processing, the reconstructed TFM channel will appear in the **UltraVision Manager**. This reconstructed data group has the same characteristics as a live TFM data group, i.e. the characteristics of a merged data group.

The image below shows the merged STF DMAS & Envelope data and the reconstructed FMC-TFM DMAS & Envelope data (VC-Side and VC-End Views). When comparing to the merged standard PA UT data and the live TFM, the corner and tip signals from the crack are still very clearly observed, and the overall noise level is drastically reduced for both reconstructed channels with the DMAS algorithm.

Merged STF 30° to 75° LW, res 0.2° DMAS & Envelope

Reconstructed FMC-TFM L-L 256 x 256 DMAS & Envelope

4.3 1D-Linear Probe, SW Wedge, Pulse-Echo Mode, recorded with DYNARAY

When FMC (or HMC) raw data are recorded with **DYNARAY**, the software generates a single file, the regular **UVData** file, and this file contains the phased array data and the raw FMC (or HMC) data. In order to process the raw data, just open the regular UVData file in UltraVision Classic.

🖳 Open Data Fi	e					×
Look in:	Files FMC RD)S 🗸 🎯 🏂 📂	.			
Quick access Desktop Libraries My PC	Name Extension Fit Images CS Weld_HM Flat_DMA 22 Flat_LM 5M FMC_LM 5M SS_DMA 225	A MC_LM 5MHz_55SW.UVData 25MHz_PA UT_256&FMC_Notch.UVData Hz_Contact_TFM256&FMC_Static SS_01.UVData HHz_LW_Notch.UVData 5 MHz_TRL_PA&FMC_Crack.UVData	Date modified 30-Oct-20 4:28 PM 05-Nov-20 9:57 AM 04-Apr-17 10:58 AM 17-Jul-20 2:21 PM 30-Apr-20 3:13 PM 02-Apr-20 4:18 PM 28-Sep-17 4:46 PM	Type File folder File folder UltraVision 3 Data UltraVision 3 Data UltraVision 3 Data UltraVision 3 Data UltraVision 3 Data	Size 16,125,920 KB 21,536 KB 11,296 KB 9,248 KB 275,488 KB	Loaded Sections Hardware Setup Display Setup Scanner Setup Specimen Setup Component Setup File Information UT Data
Network	File name:	CS Weld_HMC_LM 5MHz_55SW.UVData			✓ Open	
	Files of type:	All UltraVision Data Files (*.UVData;*.BeamData;*.rd	dt;*.dat)		Cancel	

Once the file is loaded, the raw HMC A-scan data will show up in the Contents Pane

The file for this user case is a very large file (more than 16 GBytes), from a carbon steel weld sample with various welding flaws. The file contains a standard PA UT channel, with an azimuthal sweep from 40° to 70°SW, focused at **True Depth** 20 mm, in addition to a separate channel named "HMC" containing HMC data taken every mm along the 300 mm long sample.

The image from the Advanced Calculator shows the probe assembly with SW wedge, a typical probe configuration used for carbon steel weld inspection. The probe is located so that the weld and HAZ volume are covered using the first and the second half skip of the ultrasound path.

For easy data review and evaluation of standard phased array data, UltraVision Classic includes the Volumetric Merge tool. The parameters below have been used to generate the merged data group.

VM Volumetric Merge ×	VM Volumetric Merge ×	VM Volumetric Merge ×
Dds Processing Rarges □ □ Uffersord Differsord □ □ □ Image: Differsord □ □ Image: Differsord Differsord □ □ Image: Differsord Differsord □ □ Image: Differsord Differsord Image: Differsord Image: Differsord Differsord	Data Processing New merge name Merge PA Options Default Operation Rat Operation Merge Include source beam information Threshold Threshold 10 State State Use sectoral interpolation	Data Processing Ranges Source data selection Complete Data Range Source data selection Complete Data Range Source data selection Complete Data Range Source data selection 000 mm 9000 mm Data Range Index 33.82 mm 49.80 mm Data Range Detination volume Sati Sop Resolution Scan 0.00 mm 90.00 mm 0.00 mm Index 0.00 mm 0.00 mm 0.00 mm USound 0.00 mm 90.00 mm 0.25 mm USound User 16 bits Low Resolution
Sound path Add Current wave type Add Current wave Path Add Current wave Path Add Current wave Path Emote. Epot	Import Epot (Back Next.) Printh Cancel	Import Export < Back Next 3 Finish Cancel

The merged data group is shown below, using the typical VC-Top, VC-Side and VC-End views. The weld sample contains 4 weld defects, a lack-of fusion, an incomplete penetration, a toe-crack and a cluster of porosity. All can be detected, but the low amplitude signals of the incomplete penetration and the cluster of porosity are not very well resolved. On the other hand, the corner and tip echoes from the toe-crack can be clearly observed.

To reconstruct the elementary A-scan data recorded with **DYNARAY**, make sure that the separate "FMC" (or "HMC" channel is "active" by adding a view for this channel and selecting this view (see below). If another channel is selected, the **Process Summation** button will NOT appear.

4.3.1 Sectorial Total Focusing Reconstruction

To reconstruct Sectorial Total Focusing data, select **Configuration Pulse-Echo** in the **Probe tab**.

Advanced Calculator	Į ×
Hardware Probe	Process Summation
Wedge Scanner Beam Angles	Draw
Focalization Elements	Simulate
	All Commands 🔹
Tune 1-D Linear array	
Type Type Intel anay	
Probe separation	0.00 mm
Configuration	Pulse-Echo ~
Transmitter wave type	Shear ~
Receiver wave type	Shear ~

Then define the parameters of the Sector scan in the **Beam Angles**, **Focalization** and **Elements** tabs. In the **Focalization** tab select **Focusing Type Total Focusing**. In this example, the angle resolution is set at 0.5 degrees and the active aperture of the probe at 32 elements, similar to what is used for the standard phased array channel.

Advanced Calculator	ά×	Advanced Calculator	ųΧ	Advanced Calculator	4 ×
Hardware Probe 	Process Summation	Hardware - Probe - Wedge - Scanner - Beam Angles - Focalization - Blements	Replace	Hardware Probe Wedge Scanner Beam Angles Focalization Bements	Process Summation
Type Azimuthal Selection Refracted angle	~	Focusing type Total focu Envelope	using V	Single Hypertronics ~	Start Stop Resolution
Use Impingement Angle Use Impingement Angle Start Stop Primary steering angle 0.0 0.0 Secondary steering angle 0.0 0.0 Refraction angle 40.0 70.0	 Resolution 1.0 1.0 deg 0.5 deg 	Start Emission focus position Focal plane position Start Offset 20.00 10.00	Stop Resolution	Primary axis Secondary axis Primary axis aperture Secondary axis aperture Connection	17 1 1 1 32 1 1
Beam skew angle 0.0 0.0 Proce	1.0 deg ess Angles	Depth 0.00 20.00 DDF DDF Start Reception focus position 50.00 Timebase Timebase Type Hall P Start Timebase values 0.00	t Stop 50.00 mm ath Range 80.00 mm	Receiver Primary axis Secondary axis Primary axis aperture Secondary axis aperture Connection	Start Stop Resolution 17 1 1 1 1 1 32 1 1 1 1 1

Then hit the **Process Summation** button, and the software will propose a structured name for the **New Channel** of reconstructed data. In this example, the reconstruction is with **DMAS**.

Advanced Calculator		ά×	🔹 Software Beam Summa	tion			×
Hardware Probe Wedge	_	Process Summation	New Channel Name: Rectification:	TF LU DMAS Sector R: 40.0 - 70.0 Bipolar	deg Sk: 270.0 deg		
Scanner Beam Angles Focalization Elements		Draw Construction Simulate					
		All Commands 🔹				OK	Cancel

Since this is a very large data file, with HMC data at each probe location, the processing time is longer. The user can better monitor the progress of the operations, by hitting the Details button.

leam Summation	
Total progress:	
Close this window aut	omatically when done
Details	Cancel
Details	Califer
Task	Progression
Scan/Index 82 of 306	riogression
Scan/Index 83 of 306	
Scan/Index 84 of 306	
Scan/Index 85 of 306	
Scan/Index 86 of 306	
Scan/Index 87 of 306	
Scan/Index 88 of 306	
Scan/Index 89 of 306	
Scan/Index 90 of 306	
Scan/Index 91 of 306	

The Volumetric Merge tool can also be used on the reconstructed STF data group. Similar parameters are used to generate this new merged data group.

VM Volumetric Merge ×	VM Volumetric Merge ×	VM Volumetric Merge ×
Data Processing Ranges B:- Iteracional B:- # Modern B:- # Modern	Data Processing New mege name Marge TF DMAS Quison Colore Operation Marge Operation Marge Include source position information Include source position information Threshold 10 View sectorial interpolation	Data Processing Ranges - Source region - - - Data Flange - Source data selection Complete - Data Flange Soart 0:00 mm 306:00 mm Indem: 33:12 mm 49:10 mm - Destination volume - - Data Range Soart 0:00 mm 30:00 mm Notes 30:00 mm 10:00 mm Notes 30:00 mm 10:00 mm Videound 0:00 mm 0:00 mm
Sound path Processing No rebound Summary Wave Path Current wave type Add Langtudinal Add Sinear Remove Path		Default Values
Import Export KBack Next > Finish Cancel	Import Export < Back Next > Rinish Cancel	Import Export < Back Next > Finish Cancel

The merged data group from the STF DMAS reconstruction is shown below. Compared to the standard phased array data, the cluster of porosity is much better resolved, and the overall resolution and SNR are improved.

4.3.2 TFM Reconstruction

To reconstruct TFM data, select **Configuration TFM Pulse-Echo** in the **Probe tab**.

Advanced Calculator	Ф ×
Hardware Probe	Process Summation
···· Wedge ···· Scanner ···· TFM	Draw
Elements	Simulate
	All Commands 👻
Type 1-D Linear	array 🗸
Probe separation	0.00 mm
	TEM Dates Estat

Then define the parameters of the TFM frame in the **TFM** and **Elements** tabs.

First, the **Construction path** will be set to **T-T**, the frame extent will be selected identical to the extent of the merged data groups from standard PA UT and reconstructed STF. The **Frame Resolution** will be set at 1024 x 1024, resulting in an **Amplitude Fidelity** of 0.4 dB.

An active aperture of 32 elements is selected, similar to what is used for the standard phased array channel.

Advanced Calculator		Ф× А	dvanced Calculator			Į×
Hardware Probe Wedge Scanner TFM Elements	Process Summa Draw Simulate All Command	ation e ds ~	Hardware Probe Wedge Scanner TFM Elements		8	Process Summation Draw Simulate All Commands
Construction path 1	T-T v					
Construction path 2	None ~	Γ	Transmitter	Start	Stop	Resolution
Construction path 3	None ~		Primary axis	17	17	1
Construction path 4	None ~		C	•	1	
Frame location	Absolute ~		Secondary axis			
Frame horizontal start	-30.00 mm	L	Primary axis aperture	32		
Frame horizontal width	60.00 mm		Secondary axis aperture	1		
Frame vertical start	0.00 mm		Connection	1		
Frame vertical depth	50.00 mm					
Frame Resolution	1024 X 1024 V		Receiver	Start	Stop	Resolution
Custom Resolution			Primary axis	17	17	1
Real frame resolution	1024 1024		Secondary axis	1	1	1
DigitizingFrequency	~		Primanu avia anodura	32		
Depth Resolution	0.08 λ		r nindry axis aperture	32		
Width Resolution	0.09 λ		Secondary axis aperture	1		
Amplitude Fidelity	0.4 dB		Connection	1		
Data Collection Mode	HMC \checkmark					
Envelope						

Then hit the **Process Summation** button, and the software will again propose a structured name for the **New Channel** of reconstructed data. With none of the options checked, the common **DAS** (Delay and Sum) reconstruction algorithm is used.

For raw FMC or HMC data acquired with **DYNARAY**, the "Linear" option is unchecked by default, but in this case study with a One-line scanning sequence there is no benefit of reconstructing with the "Linear Unchecked" option.

Advanced Calculator	K 🗴 Software Beam Summation	×
Hardware Process Summation Wedge Scanner TFM Bements Simulate All Commands	New Channel Name: TFM Sk: 270.0 deg T-T (1024 x 1024) Rectification: Bipolar PCF DMAS Linear OK Cancel	

Upon hitting OK and processing, the reconstructed TFM channel will appear in the **UltraVision Manager**. This reconstructed data group has the same characteristics as a merged data group, so no additional merging operation is required. The data group is shown below. Compared to the standard phased array data, the cluster of porosity and the incomplete penetration are much better resolved, and the overall resolution and SNR are improved.

For the second TFM reconstruction, the **DMAS** reconstruction algorithm is used. Also, the active aperture is changed to 64 elements. The operator can manually modify the structured name for the **New Channel** of reconstructed data to reflect the modified aperture.

Upon hitting OK and processing, the reconstructed TFM channel will appear in the **UltraVision Manager** and can be visualized. The new TFM data group is shown below. The improved resolution provided by the larger aperture can be clearly observed. Also the DMAS algorithm further reduces the noise.

The image below compares the VC-End views of weld with the 4 flaws for merged PA UT (left), merged reconstructed STF DMAS (middle) with 32-element aperture and finally TFM DMAS (right) with 64-element aperture. This further illustrates the improved resolution and SNR provided by the advanced focusing algorithms and the large aperture.

4.4 Dual 2D-Matrix Array (DMA), Pitch & Catch Mode, recorded with DYNARAY

When FMC (or HMC) raw data are recorded with **DYNARAY**, the software generates a single file, the regular **UVData** file, and this file contains the phased array data and the raw FMC (or HMC) data. In order to process the raw data, just open the regular UVData file in UltraVision Classic.

🖳 Open Data F	le					×
Look in:	Files FMC R	os 🗸 🍳 🔊 🖄				
Quick access Desktop Libraries My PC	Name Extension Fi Images Flat_DMA 2 Flat_LM 5M FMC_LM 5M SS_DMA 22	^ 25MHz_PA UT_256&FMC_Notch.UVData Hz_Contact_TFM256&FMC_Static SS_01.UVData MHz_LW_Notch.UVData 5 MHz_TRL_PA&FMC_Crack.UVData	Date modified 30-Oct-20 4:28 PM 03-Nov-20 2:25 PM 17-Jul-20 2:21 PM 30-Apr-20 3:13 PM 02-Apr-20 4:18 PM 28-Sep-17 4:46 PM	Type File folder File folder UltraVision 3 Data UltraVision 3 Data UltraVision 3 Data	Size 21,536 KB 11,296 KB 9,248 KB 275,488 KB	Loaded Sections Loaded Sections Hardware Setup Display Setup Scanner Setup Component Setup File Information UT Data
Network	File name:	SS_DMA 225 MHz_TRL_PA&FMC_Crack.UVData	1	~	Open	
	Files of type:	All UltraVision Data Files (*.UVData;*.BeamData;*.re	dt;*.dat)	~	Cancel	

Once the file is loaded, the raw FMC A-scan data will show up in the Contents Pane

The file for this user case was recorded statically on a stainless steel weld with a crack, and contains a standard PA UT channel, with an azimuthal sweep from 20° to 70°LW, in addition to a separate channel named "FMC" containing an FMC Snapshot with 900 (30 x 30) individual A-scans (both transmitter and receiver arrays have 30 elements).

The image from the Advanced Calculator shows the DMA probe assembly with TRL wedge, a typical probe configuration used for stainless steel weld inspection.

The standard phased array data are shown below, using the Sectorial scan together with the A-Scan. The corner and tip echoes from the crack can be observed, as well as a strong mode-converted signal. It can also be observed that in this case no smoothing was used for the phased array data.

To reconstruct the elementary A-scan data recorded with **DYNARAY**, make sure that the separate "FMC" (or "HMC") channel is "active" by adding a view for this "FMC" channel and selecting this view (see below). If another channel is selected, the **Process Summation** button will NOT appear.

4.4.1 Sectorial Total Focusing Reconstruction

To reconstruct Sectorial Total Focusing data, select **Configuration Pitch & Catch** in the **Probe tab**.

dvanced Calculator	中 :
Hardware Probe	Process Summation
	Draw
Beam Angles Focalization Elements	Simulate
	All Commands
Type 2-D Matrix array	- i i i
Probe separation	25.60 mm
Configuration	Pitch and Catch \sim
Transmitter wave type	Longitudinal ~

Then define the parameters of the Sector scan in the **Beam Angles**, **Focalization** and **Elements** tabs. In the **Focalization** tab select **Focusing Type Total Focusing**.

Advanced Calculator				ųΧ	Advanced Calculator		Ψ×	Advanced Calculator			φ×
Hardware Probe Wedge Scanner Beam Angles Focalization Bements		Ø 8	Process S	iummation raw mulate	Hardware Probe Wedge Scanner Beam Angles Focalization Elements	Process S	Summation raw mulate nmands -	Hardware Probe Wedge Scanner Beam Angles Focalization Bements		Process Summation	n
Type Azimuthal Selection Refracted/Bea	∽ m skew angl ection	e \	•		Focusing type	Total focusing V		Transmitter	Start Sto	p Resolution	
Use Impingement Angle Primary steering angle	Start 0.0	Stop	Resolution	on deg	Emission focus position Focal plane position	Start Stop Resolut 25.00 50.00 10.00	tion mm	Primary axis Secondary axis Primary axis aperture	1 1 1 1 10	1	
Secondary steering angle Refraction angle	0.0	0.0	1.0 0.5	deg deg	Offset 20.00 Depth 0.00	10.00 mm 20.00 mm		Secondary axis aperture Connection	3		
Beam skew angle	0.0	Process	1.0 Angles	deg	DDF DDF Reception focus position Timebase Timebase Type Timebase values Resolution	Start Stop 50.00 50.00 mm Half Path Start Range 0.00 50.00 mm 0.10 mm or 🖌 Ascan sample	m	Receiver Primary axis Secondary axis Primary axis aperture Secondary axis aperture Connection	Start Sto 1 1 10 1 65 1	P Resolution	

Then hit the **Process Summation** button, and the software will propose a structured name for the **New Channel** of reconstructed data.

Advanced Calculator	ų ×	🔹 Software Beam Summation	×
Hardware Probe Wedge Scanner	Process Summation	New Channel Name: TF LU Sector R: 20.0 - 70.0 deg S: 0.0 - 0.0 degSk: 90.0 deg Rectification: Bipolar	
Beam Angles Focalization Elements	All Commands •	PCF DMAS Dinear OK Cancel	

In this example, the reconstruction has been done with the regular **DAS** (first figure below), with a combination of **DAS** and **Envelope** (second figure below), and finally with a combination of **DMAS** and **Envelope** (third figure below).

The influence of the **Envelope** (smoothing) is clearly visible on the sectorial scan and A-scan views.

The STF reconstruction with DAS only provides an image that is very similar to the live standard phased array channel without smoothing. This is to be expected, because the standard phased array beam was focused in the region of the crack.

The reconstruction with DMAS shows far less intensity for the mode converted signal, and improves the overall SNR.

4.4.2 TFM Reconstruction

Hardwa Probe	re	Process Summation
Wedge Scanne TFM	r	Draw
Elemen	ts	Simulate
		All Commands
Туре	2-D Matrix array	✓ 5° 5°
Probe se	paration	25.60 mm
C C	-tion	TEM Dash and Catalansia

To reconstruct TFM data, select **Configuration TFM Pitch & Catch** in the **Probe tab**.

Then define the parameters of the TFM frame in the **TFM** and **Elements** tabs. The **Construction path** is set to **L-L**, and a **Frame Resolution** of 512 x 512 is used. For the considered 2.25 MHz probe and frame extent, this is results in an excellent **Amplitude Fidelity** of 0.1 dB.

Advanced Calculator	ф :	× Advanced Calculator	ά×
Hardware Probe Wedge Scanner TFM Blements	Process Summation Process Summ	Hardware Probe Wedge Scanner TFM Elements	Process Summation
Construction path 1	L-L V		
Construction path 2	None 🗸	Transmitter	
Construction path 3	None 🗸		Start Stop Resolution
Construction path 4	None 🗸	Primary axis	1 1 1
Frame location	Absolute 🗸	Secondary axis	1 1 1
Frame horizontal start	-25.00 mm	Primary axis aperture	10
Frame horizontal width	50.00 mm	Secondary axis aperture	3
Frame vertical start	0.00 mm	Connection	1
Frame vertical depth	35.00 mm		
Frame Resolution	512 X 512 🗸 🗸	Receiver	Start Stop Resolution
Custom Resolution		Primary axis	
Real frame resolution	512 512	C	
DigitizingFrequency	~	Secondary axis	
Depth Resolution	0.03 λ	Primary axis aperture	10
Width Resolution	0.04 λ	Secondary axis aperture	3
Amplitude Fidelity	0.0 dB	Connection	65
Data Collection Mode	HMC ~		
Envelope			

Then hit the **Process Summation** button, and the software will again propose a structured name for the **New Channel** of reconstructed data.

In this example, the reconstruction has been done with a combination of **DMAS** and **Envelope**.

Upon hitting OK and processing, the reconstructed TFM channel will appear in the **UltraVision Manager**, and can be visualized like a merged data group.

The image below shows images from a merged reconstructed standard phased array channel, and from 5 TFM 512 x 512 frames reconstructed in L-L wave mode with different algorithms.

Since the PA UT channel is well focused on the crack, the advanced focusing algorithms don't provide a lot of extra focusing capability or resolution. But typical behavior of each algorithm is confirmed. For example, **PCF** and **DMAS** show far less intensity for the mode converted signal, and an SNR improvement compared to regular (**DAS**) TFM.

The next image shows TFM frame reconstructions with **DMAS** and **Envelope** for various direct and indirect wave modes. It can be observed that for the crack on the near-side of the stainless steel weld, all reconstruction modes, including both L and T waves, can somehow detect the crack.

5 Typical User Cases - PWI Data Reconstruction

5.1 1D-Linear Probe, LW Wedge, Pulse-Echo Mode, recorded with EMERALD

The file for this user case was recorded on a reference specimen made of 304 stainless steel. The considered specimen is 50 mm thick and contains a number of simulated branched cracks, fabricated using wire EDM (see below). The base material has a relatively fine grain structure, so we were able to use the same 5 MHz pulse-echo probe and L-wave wedge of user case 4.1.

The recorded data file contains a static PWI-TFM frame 512 x 512 in L-L mode generated by a firing sequence of 15 pulses, in addition to an Snapshot containing 960 (15×64) individual A-scans.

Once the file is loaded, the PWI raw A-scan data will show up in the Contents Pane.

5.1.1 TFM Reconstruction

For PWI raw data, the only available option is to reconstruct TFM images. To reconstruct PWI-TFM data, select **Configuration PWI Pulse-Echo** in the **Probe tab**.

dvanced Calculator	ų ×
Hardware Probe	Process Summation
Wedge Scanner PWI Pulses	Draw
Focalization Receivers	Simulate
IIII TFM	All Commands 🔻
Type 1-D Linear array	
Probe separation	0.00 mm
Configuration	PWI Pulse Echo 🗸 🗸
Configuration Transmitter wave type	PWI Pulse Echo ~

The **PWI Pulses** tab and the **Focalization** tab is available, for PWI the firing sequence was fixed before the recording and cannot be modified. All fields are therefore "grayed".

Then define the parameters of the TFM frame in the **TFM** and **Receivers** tabs.

The **Construction path** will be set to **L-L**, just like for the live TFM data, and also the frame extent and **Frame Resolution** (512 x 512) will be selected identical. The **Envelope** option is also selected.

Advanced Calculator		4 X	Advanced Calculator		4
Hardware Probe Wedge Scanner PWI Pulses Focalization Receivers TFM	4	Process Summation Draw Simulate All Commands			Process Summation
Construction path 1	L-L v	/			
Construction path 2	None	/	Receiver	0	Star David ting
Construction path 3	None	1		Start	Stop Resolution
Construction path 4	None	1	Primary axis	1 1	1
Frame location	Relative	/	Secondary axis	1	1
Frame horizontal start	-25.00 mm		Primary axis aperture	64	
Frame horizontal width	50.00 mm		Secondary axis aperture	1	
Frame vertical start	0.00 mm		Connection	1	
Frame vertical depth	60.00 mm				
Frame Resolution	512 X 512				
Custom Resolution					
Real frame resolution	512	512			
DigitizingFrequency	100 MHz	/			
Depth Resolution	0.10 λ				
Width Resolution	0.08 λ				
Amplitude Fidelity	0.3 dB				
Data Collection Mode	FMC	/			
Envelope					

Then hit the **Process Summation** button, and the software will propose a structured name for the **New Channel** of reconstructed data.

Advanced Calculator	Ψ×	🔹 Software Beam Summation	×
Hardware Probe Wedge Scanner Beam Angles Focalization Elements	Process Summation Process Summation Image: Constraint of the second s	New Channel Name: PWI Envelope Azi R: 15.0, 85.0, 5.0 E: 1, 64 Sk: 90.0 deg L-L (512 x 512) Rectification: Bpolar PCF DMAS Unear OK	

None of the options is checked, so the common **DAS** (Delay and Sum) reconstruction algorithm is used.

For the second PWI-TFM reconstruction, the options **Envelope** and **DMAS** are checked, and this is also reflected in the structured name for the **New Channel** of reconstructed data.

Advanced Calculator	Ψ×	🔹 Software Beam Summation	×
- Hardware - Probe - Wedge - Scanner - Beam Angles - Focalization - Elements	Process Summation Process Summ	New Channel Name: PWI DMAS & Envelope Azi R: 15.0, 85.0, 5.0 E: 1, 64 Sk: 90.0 deg L-L (512 x 512) Rectification: Bipolar PCF DMAS Unear OK	

The image below compares the live PWI-TFM data and the reconstructed PWI-TFM data. It can be observed that the DMAS algorithm also improves the imaging quality for the PWI-TFM reconstruction.

The second image shows similar data, but from live FMC-TFM and FMC-TFM reconstructions. It can be observed that the quality of the PWI-TFM imaging is very close to the FMC-TFM imaging, provided that sufficient PWI pulses are used. The quality of the TFM imaging and the benefits for flaw characterization are clearly illustrated by the use of a DXF overlay of the specimen on the data.

5.2 Dual 2D-Matrix Array (DMA), Pitch & Catch Mode, recorded with EMERALD

As for the previous user case, the PWI raw data have been recorded with the **EMERALD** unit. In order to process the raw data, just open the regular UVData file in UltraVision Classic and the additional UVDataFMC file will automatically be loaded as well.

For this user case, the same CASS weld specimen and the 1 MHz DMA probe of § 4.2 were used. This time the file contains a standard PA UT channel with an azimuthal sweep from 30° to 75°LW, a live PWI channel, and PWI raw data taken every 2 mm over a total distance of 120 mm. The PWI firing sequence included 8 angles between 5° and 75°LW.

The merged standard PA UT data and the live PWI-TFM data are shown below (VC-Side and VC-End Views). The corner and tip signals from the crack can be clearly observed.

To perform the reconstruction from the PWI raw data, make sure that the live PWI channel is "active" by clicking on a view of this channel. If the standard PA UT channel is selected, the **Process Summation** button will NOT appear.

5.2.1 TFM Reconstruction

To reconstruct PWI-TFM data, select **Configuration PWI Pitch and Catch** in the **Probe tab**, and at the same time select the appropriate wave type for transmitter and receiver.

Advanced Calculator	ά×
- Hardware - Probe - Wedge - Scanner - PWI Pulses - Focalization - Receivers - TFM	Process Summation Process Summation Draw Simulate All Commands
Type 2-D Matrix array	· • • • • • • • • • • • • • • • • • • •
Probe separation	41.00 mm
Configuration	PWI Pitch and Catch \checkmark
Transmitter wave type	Longitudinal V
Receiver wave type	Longitudinal ~

The **PWI Pulses** tab and the **Focalization** tab is available, for PWI the firing sequence was fixed before the recording and cannot be modified. All fields are therefore "grayed".

Then define the parameters of the TFM frame in the **TFM** and **Receiver** tabs.

The **Construction path** is set to **L-L**, just like the live PWI data, and a **Frame Resolution** of 256 x 256 is used. It can be observed that since UltraVision 3.12R18, the operator can adjust the **Digitizing Frequency** (possible values 100 MHz, 50 MHz, 25 MHz and 12.5 MHz) for the recording of raw data. For low-frequency probes reducing the digitizing frequency allows to increase the scanning speed while maintaining excellent raw data quality and image quality.

In the **Receiver** tab, typically all receiver elements will be selected for the reconstruction. It is however possible to modify this selection.

Advanced Calculator		ų×	Advanced Calculator	ņ
Hardware Probe Wedge Scanner PWI Pulses Focalization Receivers TFM	P K	All Commands	Hardware Probe Wedge Scanner PWI Pulses Focalization Receivers TFM	Process Summation
Construction path 1	L-L v	1		
Construction path 2	None ~		Receiver	
Construction path 3	None ~			Start Stop Resolution
Construction path 4	None ~		Primary axis	1 1 1
Frame location	Absolute ~	1	Secondary axis	1 1 1
Frame horizontal start	-30.00 mm		Primary axis aperture	10
Frame horizontal width	60.00 mm		Secondary axis aperture	5
Frame vertical start	0.00 mm		Connection	65
Frame vertical depth	70.00 mm			
Frame Resolution	256 × 256 ~			
Custom Resolution		•		
Real frame resolution	256 2	56		
DigitizingFrequency	50 MHz V			
Depth Resolution	0.05 λ			
Width Resolution	0.04 λ			
Amplitude Fidelity	0.1 dB			
Data Collection Mode	FMC ~]		
Envelope				

Then hit the **Process Summation** button, and the software will again propose a structured name for the **New Channel** of reconstructed data.

Advanced Calculator	Į×	🔹 Software Beam Summa	tion	×
Hardware Probe Wedge Scanner Beam Angles Focalization Elements	Process Summation Process Summation Image: Comparison of the system Image: Comparison of the system All Commands	New Channel Name: Rectification:	PWI DMAS & Envelope Azi R: 5.0, 75.0, Bipolar	0.0 S: 15.0, 0.0, 1.0 E: 1, 10 1, 5Sk: 90.0 deg L-L (256)

After hitting OK and processing, the reconstructed PWI-TFM channel will appear in the **UltraVision Manager**. This reconstructed data group has the same characteristics as a live PWI data group, i.e. the characteristics of a merged data group.

The image below shows the reconstructed PWI-TFM DMAS & Envelope data (VC-Side and VC-End Views). When comparing to the merged standard PA UT data and the live PWI, the corner and tip signals from the crack are still very clearly observed, and the overall noise level is drastically reduced for the reconstructed channel with DMAS.

When comparing the reconstructed PWI-TFM image with the reconstructed FMC-TFM image of § 4.2, we can observe little difference, even for a PWI firing sequence that included only 8 pulses, compared to 50 pulses (transmitter elements) for the FMC firing sequence. The number of raw A-scans recorded for the PWI firing was 400 (8 x 50), compared to 2500 (50 x 50) for the FMC firing.

Reconstructed PWI-TFM L-L 256 x 256 DMAS & Envelope

6 Reference Guide

The reconstruction of raw FMC of PWI data recorded with EMERALD and TOPΔZ⁶⁴, and raw FMC or HMC data recorded with DYNARAY or DYNARAY Lite, is performed entirely in the Advanced Calculator interface of UltraVision Classic.

The configuration to be reconstructed can be selected from **Configuration** in the **Probe tab**.

Advanced Calc	ulator		‡×
Hardware Probe Scanner PWI Pulses Focalization Receivers TFM			Process Summation Process Summation Draw Simulate All Commands
Туре	1-D Linear array	~	
Probe separa	ition		0.00 mm
Configuration		PWI Pu Pulse-E	Ilse Echo v
Transmitter v Receiver wa	vave type ve type	Tandem Tandem TOFD Through TFM Pu TFM Pit	n Dual Probes n Single Probe n Transmission Ise-Echo ch and Catch
Probe		PWI Pit	ch and Catch
Transmitter pr	obe name LM - 5	MHz	
Receiver prob	e name LM - 5	MHz	

The configurations available for FMC raw data reconstruction are:

- **Pulse-Echo**: to reconstruct a set of standard phased array focal laws or Total Focusing focal laws from a pulse-echo probe, e.g. **Azimuthal**, **Linear** or **Compound** sweep
- Pitch & Catch: to reconstruct a set of standard phased array focal laws or Total Focusing focal laws from a pitch & catch probe (dual linear array or dual matrix array), e.g. Azimuthal, Linear or Compound sweep
- **TFM Pulse-Echo**: to reconstruct TFM frames from a pulse-echo probe
- **TFM Pitch and Catch**: to reconstruct TFM frames from a pitch & catch probe (dual linear array or dual matrix array)

The configurations available for PWI raw data reconstruction are:

- **PWI Pulse-Echo**: to reconstruct TFM frames from a pulse-echo probe
- **PWI Pitch and Catch**: to reconstruct TFM frames from a pitch & catch probe (dual linear array or dual matrix array)

6.1 Standard PA UT reconstruction of FMC raw data

To reconstruct standard PA UT data, select **Configuration Pulse-Echo** or **Pitch & Catch**, in the **Probe tab**, and select the **Transmitter wave type** and **Receiver wave type**.

It is important to mention that the FMC data reconstruction can be performed for both **Longitudinal** and **Shear** waves no matter what the considered probe and wedge configuration is. <u>But obviously the quality</u> of the reconstructed data will depend on the ability of the probe configuration to efficiently generate each wave type.

Hardware Probe	Process Summation
Wedge Scanner Room Angles	Draw
Focalization Elements	Simulate
	All Commands
Type 1-D Linear array	50 50 5 0
Probe separation	0.00 mm
Probe separation Configuration	0.00 mm Pulse-Echo ~
Probe separation Configuration	0.00 mm Pulse-Echo ~

Then define the parameters of the required sweep in the **Beam Angles**, **Focalization** and **Elements** tabs, just as if you would be programming focal laws prior to a standard phased array inspection.

Advanced Calculator				ųΧ	Advanced Calculator		Į×	Advanced Calculator				Ψ×
Hardware Probe Wedge Scanner Beam Angles Focalization Elements		ć	Process Si Dra Co Sin All Com	ummation uw nulate nands •	Hardware - Probe - Wedge - Scanner - Beam Angles - Focalization - Elements		Process Summation	Hardware Probe Wedge Scanner Beam Angles Focalization Bements			Process S	iummation aw mulate imands •
Type Azimuthal Selection Refracted and	√ le				Focusing type	Half path	~	Turnettur				
Use Impingement Angle	Quet	Gten	Peopletia		Emission focus position	Start S 50.00 0.0	op Resolution	Primary axis Secondary axis	Start	Stop 1 1	Resolution	
Primary steering angle Secondary steering angle	0.0	0.0	1.0	deg	Focal plane position Start			Primary axis aperture Secondary axis aperture	64			
Refraction angle	10.0	80.0	1.0	deg	Offset 100.00 Depth 0.00	10.00 mm 20.00 mm		Connection	1			
Beam skew angle		Process	1.0	deg	DDF DDF Reception focus position Timebase Timebase Type 1 Timebase values Resolution 2	Start 50.00 Half Path Start F 0.00 65 0.10 mm or 🗹	Stop 50.00 mm	Receiver Primary axis Secondary axis Primary axis aperture Secondary axis aperture Connection	Start 1 1 64 1 1 1 1	Stop 1	Resolution	

Important Notes

- 1. In the Focalization tab, the Timebase Type can be selected as Half Path of True Depth
- In the Focalization tab, the Timebase Resolution is by default set to A-scan sampling, which means that the resolution of the raw FMC A-scans (highest possible resolution) will be used for the reconstructed signals; for standard phased array reconstruction the resolution cannot be changed

Depending on the sweep **Type** selection in the **Beam Angles** tab, (**Azimuthal**, **Linear** or **Compound**), after hitting the Process Summation button, the software will propose an appropriate structured name for the **New Channel** of reconstructed data. The user can modify this name.

Rectification: Bipolar V None Bipolar
Bipolar

New Channel Name: Rectification:	Linear R: 30.0 deg Sk: 90.0 deg Bipolar ~ None Bipolar	
		OK Can
ftware Beam Summa	tion	
ftware Beam Summa New Channel Name:	tion Compound R: 30.0 - 80.0 deg Sk	:: 90.0 deg
ftware Beam Summa New Channel Name: Rectification:	tion Compound R: 30.0 - 80.0 deg Sk Bipolar None Bipolar	:: 90.0 deg
ftware Beam Summa New Channel Name: Rectification:	tion Compound R: 30.0 - 80.0 deg Sk Bipolar None Bipolar	: 90.0 deg

The **Rectification** option allows to select **None** to generate RF reconstructed data, or **Bipolar** for rectified reconstructed data.

6.2 Total Focusing reconstruction of FMC raw data

To reconstruct Total Focusing data, select **Configuration Pulse-Echo** or **Pitch & Catch** in the **Probe tab**, and select the **Transmitter wave type** and **Receiver wave type**.

It is important to mention that the FMC data reconstruction can be performed for both **Longitudinal** and **Shear** waves no matter what the considered probe and wedge configuration is. <u>But obviously the quality</u> of the reconstructed data will depend on the ability of the probe configuration to efficiently generate each wave type.

dvanced Calculator	Д
Hardware Probe	Process Summation
Wedge Scanner Beam Angles	Draw
Focalization Elements	Simulate
	All Commands
Type 1-D Linear array	~ 50 50
Type 1-D Linear array Probe separation	✓ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
Type 1-D Linear array Probe separation Configuration	V C C C C C C C C C C C C C C C C C C C
Type 1-D Linear array Probe separation Configuration Transmitter wave type	V Congitudinal V

Then define the parameters of the required sweep in the **Beam Angles**, **Focalization** and **Elements** tabs, just like for standard phased array reconstruction, except that in all cases, The **Focusing type** must be set to **Total Focusing**.

Advanced Calculator				ąχ	Advanced Calculator		ά×	Advanced Calculator		ųΧ
Hardware Frobe Wedge Ccanner Beam Angles Focalization Elements		Ċ	Process Si Dra Con All Com	ummation ww ulate mands •	Hardware Probe Wedge Scanner Beam Angles Focalization Bements		Process Summation	Hardware - Probe - Wedge - Scanner - Beam Angles - Focalization - Elements	Process Summa Control Traw Control Traw All Command	ation e ds -
Type Compound Selection Refracted ang	le	•	~		Focusing type Envelope 1	Total focusing	~	Transmitter		
Use Impingement Angle	Que	9	Provide		Emission focus position	Start 50.00 0.0	Resolution	Connection	1	
Dimension and	Start	Stop	Resolutio	n dea	Focal plane position			Connection		
Frimary steering angle	0.0	0.0	1.0	uey	Start					
Secondary steering angle	0.0	0.0	1.0	deg	Offset 20.00	10.00 mm				
Refraction angle	30.0	62.0	1.0	deg	Death 0.00	20.00				
Beam skew angle	0.0	0.0	1.0	deg	Deptn	20.00				
	[Proces	s Angles]	- DDF	Start	Stop			
Element Selection					Reception focus position	50.00	50.00 mm			
	Start	Stop								
Primary axis	1	33]							
Primary axis aperture	32	1			limebase lype	Half Path	~			
		_				Start	Range			
					Timebase values	0.00	5.00 mm			
					Resolution 3	0.20 mm	1			
						or 📋	A-scan sampling			

Important Notes

- 1. Since UltraVision 3.11R4, for **Total Focusing** reconstruction, the **Envelope** feature should now be selected in the **Focalization** tab
- 2. In the Focalization tab, the Timebase Type can ONLY be selected as Half Path
- 3. In the Focalization tab, the Timebase Resolution is by default set to A-scan sampling, (highest possible resolution), but can be modified to a lower resolution.

Depending on the sweep **Type** selection in the **Beam Angles** tab, (**Azimuthal**, **Linear** or **Compound**), after hitting the **Process Summation** button, the software will propose an appropriate structured name for the **New Channel** of reconstructed data. The user can modify this name.

New Channel Name:	TF LU Envelope Se	ctor R: 30.0 - 62.0 de	g Sk: 270.0 deg	
Rectification:	Bipolar	\sim		
	_			

🔹 Software Beam Summa	lion	×
New Channel Name:	TF Linear R: 30.0 deg Sk: 270.0 deg	
Rectification:	Bipolar V	
PCF DMAS		
🗹 Linear	ок	Cancel

🔹 Software Beam Summa	tion			×
New Channel Name:	TF LU Compound R:	30.0 - 62.0 deg Sk: 2	70.0 deg	
Rectification:	Bipolar	\sim		
			-	

The **Rectification** option allows to select **None** to generate RF reconstructed data, or **Bipolar** for rectified reconstructed data.

For **Total Focusing** reconstruction, the options **PCF** and **DMAS** are available. The options are explained in § 2 of this document. Checking one or more options will automatically reflect in the structured **New Channel Name** proposed by the software.

For Total Focusing reconstruction of an **Azimuthal** or **Compound** sweep, the option **Linear** is by default unchecked (and grayed out), and the individual reconstructed A-Scans (for each angle in the sweep) will be accessible for e.g. Volumetric Merge. The proposed structured name automatically includes the mention **"LU" ("Linear Unchecked").**

For Total Focusing reconstruction of a **Linear** sweep, the option **Linear** is by default unchecked, but the user can check it if he wants the reconstructed data group to be automatically merged. In this case, the proposed structured name does NOT include the mention **"LU"** ("Linear Unchecked").

Important Note:

Data groups reconstructed with "LU" are unmerged data groups, with individual A-Scans available, and the End view is typically visualized using the **VC-Sectorial scan** view.

Data groups reconstructed without "LU" are merged data groups, with no individual A-Scans available, and the End view is typically visualized using the **Linked VC-End** view.

6.3 TFM Reconstruction of FMC raw data

To reconstruct TFM data, select **Configuration TFM Pulse-Echo** or **TFM Pitch & Catch** in the **Probe tab**.

dvanced C	alculator	ų ×
Hardwar Probe	e	Process Summation
		Draw
Elements	S	Simulate
		All Commands 👻
		^
Туре	1-D Linear array	
Probe sep	aration	0.00 mm
Carlin	tion	TFM Pulse-Echo V

Then define the parameters of the TFM frame in the **TFM** and **Elements** tabs.

For the **Construction path**, direct paths L-L and T-T are supported as well as indirect paths LL-L, LL-LL, LL-T, TT-T and TT-TT (using reflection from the back-wall of the specimen before hitting the reflector).

The **Frame location** allows the user to determine the reference for the location of the TFM frame:

- Absolute means that the frame is reconstructed with reference to the specimen as defined in the software
- **Relative** means that the frame is reconstructed with reference to the probe reference as defined in the software

Relative

The figure below shows the effect of the reference for a given frame size definition.

Absolute

The Frame Resolution can be selected from a drop-down box (see below left), or it can be set as a Custom **Resolution** (see below right).

Whenever the selected Frame Resolution results in an Amplitude Fidelity higher than 2 dB, the field will be highlighted in yellow to suggest the operator to improve the **Frame resolution**.

Advanced Calculator	ф ×	Advanced Calculator	₽ ×
Hardware Probe Wedge Scanner TFM Elements	Process Summation Process Summation Process Summation Process Summation All Commands	Hardware Probe Wedge Scanner TFM Elements	Process Summation Process Summation Process Summation Process Summation All Commands
Construction path 1	T-T ~	Construction path 1	T-T v
Construction path 2	None ~	Construction path 2	None ~
Construction path 3	None 🗸	Construction path 3	None ~
Construction path 4	None 🗸	Construction path 4	None \vee
Frame location	Relative ~	Frame location	Relative ~
Frame horizontal start	-30.00 mm	Frame horizontal start	-30.00 mm
Frame horizontal width	60.00 mm	Frame horizontal width	60.00 mm
Frame vertical start	0.00 mm	Frame vertical start	0.00 mm
Frame vertical depth	60.00 mm	Frame vertical depth	60.00 mm
Frame Resolution	256 × 256	Frame Resolution	~
Custom Resolution		Custom Resolution	
Real frame resolution	256 256	Real frame resolution	1000 1000
DigitizingFrequency	50 MHz \checkmark	DigitizingFrequency	50 MHz \checkmark
Depth Resolution	0.37 λ	Depth Resolution	0.05 λ
Width Resolution	0.37 λ	Width Resolution	0.10 λ
Amplitude Fidelity	4.6 dB	Amplitude Fidelity	0.3 dB
Data Collection Mode	HMC \checkmark	Data Collection Mode	HMC \checkmark
Envelope		Envelope	

Depending on the **Construction path** selection in the **TFM** tab, after hitting the **Process Summation** button, the software will propose an appropriate structured name for the **New Channel** of reconstructed data. The user can modify this name.

🔹 Software Beam Summa	tion	×
New Channel Name:	TFM Envelope Sk: 90.0 deg T-T (512 x 512)	
Rectification:	Bipolar 🗸	
PCF DMAS		
🗹 Linear	ОК	Cancel

For **TFM** reconstruction, the options **PCF** and **DMAS** are available. The options are explained in § 2 of this document. Checking one or more options will automatically reflect in the structured **New Channel Name** proposed by the software.

For **TFM** reconstruction, the option **Linear** is by default unchecked, but the user can check it if he wants the reconstructed data group to be automatically merged. In this case, the proposed structured name does NOT include the mention **"LU" ("Linear Unchecked").**

Important Note:

Data groups reconstructed with "LU" are unmerged data groups, with individual A-Scans available, and the End view is typically visualized using the VC-Sectorial scan view.

Data groups reconstructed without "LU" are merged data groups, with no individual A-Scans available, and the End view is typically visualized using the **Linked VC-End** view.

6.4 TFM Reconstruction of PWI raw data

To reconstruct TFM data, from PWI raw data generated by a PWI firing sequence, select **Configuration PWI Pulse-Echo** or **PWI Pitch and Catch** in the **Probe tab**.

Hardware Probe Wedge Scanner PWI Pulses Focalization		Process Summation	
TFM	ers		All Commands
Туре	2-D Matrix array	~	5ª 5ª 🖋
Probe separation			41.00 mm
Configuration		PW	Pitch and Catch

All fields of the **PWI Pulses** tab and the **Focalization** tab are "grayed", because the parameters of the PWI firing sequence were fixed before the recording and cannot be modified.

Then define the parameters of the TFM frame in the **TFM** and **Receiver** tabs, as mentioned in § 5.1.1 and § 5.2.1.