The most effective way to minimize the risk of unnecessary shutdowns and accidents caused by corrosion under insulation (CUI) is to periodically inspect the condition of insulated equipment and piping.

THE CHALLENGE

Industrial installations sometimes generate noise loud enough to be considered hazardous for worker health and safety. Turbulence caused by fluids and vibrations in pipes are two major sources of industrial noise. Where noise control is important, it is not uncommon to find pipes wrapped in noise-dampening layers between the conventional insulation layer and the weather jacket.

Noise-dampening layers typically include an acoustical barrier of dense, soft material muffling sound and lessening vibration. Up to the end of the 20th century, lead sheets were the go-to method of performing this task because they are flexible, easy to wrap around pipes, and offer excellent noise attenuation properties. Despite concerns over lead exposure and regulatory restrictions, it is still quite common to find lead-clad pipes in installations over 15 years old.

THE SOLUTION

Common techniques used to look for CUI (visual inspection, phased-array UT, etc.) involve time-consuming and costly stripping. One common way to avoid stripping is using radiography. However, due to its high density, lead is particularly effective in blocking X-rays, seriously hampering the use of the technique.

THE BENEFITS

Using an inspection technique unaffected by the presence of lead—pulsed eddy current.

Faster, more accurate, less user dependent solution that does not require stripping to detect CUI over lead cladding.

The impact of lead cladding was assessed experimentally on a reference pipe featuring two square defects with a remaining wall thickness of 60% ±5%, 6.5 cm^2 (1 in2) and 26 cm^2 (4 in2) in area.

The first C-scan shows results from a pipe covered with 51 mm (2 in) thick insulation and an aluminum weather jacket. The second C-scan shows results from the same pipe covered with a
51 mm (2 in) insulation and aluminum weather jacket

51 mm (2 in) insulation, 1 mm (0.04 in) lead sheet, aluminum weather jacket

0.8 mm (0.03 in) lead sheet under the aluminum jacket.

The two C-scans are essentially identical. So, it is safe to assume that the lead sheet does not decrease the measurement’s signal-to-noise ratio.

In addition, yellow values on the C-scans show that the compensated wall thickness tool successfully finds the reference wall thickness value within 5% even if both defects are smaller than the probe’s footprint.

THE BENEFITS

The Lyft solution’s benefits are obvious:

- **No stripping**—Unlike other inspection techniques, PEC does not require stripping the insulation, fireproofing, or coatings from the surface under test, making it faster and more cost effective.

- **High-quality data**—Despite the presence of lead, where radiography is ineffective, acquired data shows no significant signs of attenuation or deterioration compared to data acquired without lead.

- **Lesser operator dependence**—Lyft automatically optimizes parameters and measurements, ensuring repeatability and performance.

- **No H&S issues**—Unlike radiography, PEC does not pose any hazard to the health of its users or the environment it is used in.

- **Easy deployment**—The entire solution is portable, light, compact and fast to deploy for improved productivity.

This is just a fraction of what we do. Challenge us with your project specifications.